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Reducing nonideal to ideal coupling in random matrix description of chaotic scattering:
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We write explicitly a transformation of the scattering phases reducing the problem of quantum chaotic
scattering for systems withl statistically equivalent channels at nonideal coupling to that for ideal coupling.
Unfolding the phases by their local density leads to universality of their local fluctuations for Narde
relation between the partial time delays and diagonal matrix elements of the Wigner-Smith matrix is revealed
for ideal coupling. This helped us in deriving the joint probability distribution of partial time delays and the
distribution of the Wigner time delay.
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The random matrix theorfRMT) is generally accepted to in calculatingS-matrix correlation function$6,9] and many
be an adequate tool for describing various universal statistiether related characteristics such as, e.g., time delbys
cal properties of quantum systems with chaotic intrinsic dy-12]; see Refs[11,1] for a review.
namics; see Refl] and references therein. In particular, one In the limit N—o one can prov¢13] the equivalence of
can distinguish two variants of the RMT approach allowingboth mentioned approaches by deriving the Poisson kernel
one to address the chaotic nature of quantum scattering. TH&) from the Hamiltonian approadisee also Ref.11]), with
first one[2] considers the scattering matr&as the prime the averages-matrix being
object without any reference to the system Hamiltonian. The

probability distributionP(S) of S at the fixed energy of 1— y[iE/2+ mv(E)]

incident particles is chosen to satisfy a maximum entro E , 2

principle IZmd natural constraints whicf:)rq follow from the uniny S( Jan™ 1+ v [iER2+mv(E)] 72° @

tarity and causality o8, and the presend@r absenckof the

time-reversa(TRS) and spin-rotatiofSRS symmetries, independent of3. Here, the average density of statg&E)
de(1-5'S) (BM+2-B)/2 =7T‘1\7/1l—(E/2)2 determines the mean level spacidg

P(S)sc’ 1) =(vN) ™~ of the close_d system, an_d phenomenologlcal con-
de(1—§r8)2 stantsy.>0 characterize the coupling strength to continuum
in different scattering channels€1, ... M).
Such a distribution is known as the Poisson kefi3land The particular case of ideal coupling—o [when the

uses the phenomenological avera@e optica) Smatrix  ansmission coefficients equal unity for all channels; see Eq.
S(E) as the set of input parameters. Without loss of gener¢g) below], plays an especially important role for the
ality S can be considered as diagoh4). P(S) depends also Smatrix approach[14]. Equation (1) simplifies then to
on the number of scattering channéksand the symmetry Py(S)=-const, which is invariant under the transformations
index B [B=2 for a system with broken TRS, and  of § leaving the measure invariant. Such a situation corre-
=1(4) if the TRS ispreserved and the SRS is presé- sponds to the so-called Dyson’s circular ensemi@&) of
senj]. unitary matrices and is much simpler to handle analytically.
The approach proved to be a success for extracting many A general situation of nonideal couplin§#0, turns out
characteristics important in the theory of mesoscopic transto be much more complicated. It is natural to expect, how-
port [5]. However, correlation properties of ti®matrix at  ever, that results obtained for the case of nonideal coupling
close values of enerdy as well as spectral characteristics of could be related to those at ideal coupling. Although many
an open system related to the so-called resonances turn out{igeful ideas around such a relation were discussed in the

be inaccessible in the framework of such an approach, essefterature[2,13,11,1%, we are not aware of explicit relations,
tially because of the one-energy nature of the latter. To adto the best of our knowledge.

dress such quantities one needs to consider the Hamiltonian |n  this Rapid Communication we consider the
H of the quantum chaotic system as the prime building blocknost simple but physically important case of statistically
of the theory. It amounts to treating as a largeNx N equivglent 'channels. We demongtrate the validity of the
random matrix of appropriate symmetry and relatip the following simple statemen(andA discuss several a}ppllca-
Hamiltonian by means of standard tools of the scatteringions of it): Let S(E)=Us(E)UT, where s(E)
theory[6,7]. This idea supplemented with the supersymme-=diage?:(®), . .. e?'m(E)) pe the randon$-matrix at the

try technique of ensemble averagif®] resulted in advance energyE, the distribution of which is given by the Poisson
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kernel(1) with an explicit parameterization &(E) from Eq.  sponding density foS+0 is not constant. Indeed, using the
(2) (yc="y for all c). Then for everyE the transformation of identity p(8)dé=po(¢)deo, we see that
the eigenphases.(E),
5= 1|d¢ _ T 9
p( )_?%_—wu—@emﬁ' C)

©)

= ! ! o(E)+ E
¢.=arcta m ;tan <(E) >

) ) Although simple, this relation is an important one and estab-
maps them to the eigenphasgs of the random scattering |ishes the physical meaning of the Jacobians of transforma-
matrix, the distribution of which is given by the CE of the tjon (3) relating them to the corresponding densities of the

same symmetry. In particular, the joint probability denSityscattering phases. Densi9), being expressed in terms Bf

function (JPDR of e is [1] only, does not depend on the particular choiceéSafsed in
the derivation as long as the averagmatrix is proportional

po({ph) o [1 |e?%a—e? %o|B, (4 to the unit matrix.
a<b It is instructive to look at Eq(8) in the limit of large

The matrixU of energy dependent eigenvectors uniformly number of channels when the typical differendg— d

distributed in the orthogonal, unitary, or symplectic group™Y/M<1. Then one can expand.=d+J. (d.<1)
(for B=1,2, or 4, respectivelyis not affected by mag3). aroimd, say, 53. T~he leading contribution is given by
This is a consequence of statistical equivalence of the scap({dc}) *a<p| 6a— 5b|BHC|&¢C/35C|§5M’1)’2+1, which fur-

tering channels. ther goes t@y({do}) x| ba— &p|? and agrees with dis-
The suggested transformation was first noticed and Verifributgi’on (4?38?%;)(;;;;'8% th(zb|proper rgescaling of the

fied in Ref.[11] for the case of broken TRSBE2) and phases,
further exploited in Ref[12]. It can be easily generalized to
the other symmetry classes as follows. We calculate first the b= EXNEE |53 — 7Tp(50)~5 . (10)
Jacobian of the transformatidB). After a simple algebra it ¢ ¢ 0Te ¢
can be represented as We see that in the limik1>1 the local fluctuations of the
phases unfolded by their local density turn out to be uni-
Ide _ coSs T ®) formly described by the CE at arbitrary coupling strength.

Such a universality in statistics of phases of random unitary

d0c  mvycogs, _|1—§* e?%|2’ _ _ _ _ _
(scatteringg matrices has much in common with that typical

where for eigenvalues of random Hamiltonian matri¢é$and is in
agreement with results of realistic numerical simulations for
T(E)=1—|S(E)|*= > (6) Let us now consider an application of the same ideas to
1+y+2ywv(E)

the time-delay problem, where such a universality reveals
: o , itself explicitly. Following the original wave-packet analysis
is the energy dependent transmission coeffuﬂé]_)tWe note by Wigner and Smit{17] it is natural to defing11] the
tEhat Iexgctlyhthgdsame factors as EE) appear in Eq(1). partial time delays via the energy derivative of the scattering
mploying the identity phases, 7.=2hd5./JE. Their statistical properties have
been studied in much detail in the framework of the Hamil-
, (7) tonian approach for the case of brokgrl] and preserved
7YY COSS,C0S 5| TRS as well as in the whole crossover region of gradually
) . . . broken TRS[12]. Recently, some of these predictions were
we substitute Jacobiar(§) into Eq. (4) and, making use of gy ccessfully verified with the model of a quantum Bloch

COSP,COS¢hy |

|?1da— g2 9| = | 21%a— g2 5|

the identitylT}. ,f,f,= (I1.f)™ %, arrive at particle chaotically moving in a superposition of ac and dc
M fields[18].
dpe| PM- 121 In particular, the mean density of partial time delays

®)

p({o) I |e?%a—e?|F]]
a<b c=1 C?éc

P(r)=(1M)Z. 6(7— 7¢) turns out to be especially simple
at ideal coupling,;T=1, when it reads as
With Eq. (5) taken into account, we immediately recognize

in this expression the JPDF of the eigenphases corresponding (BI2)FMI2 g~ At
to Poisson kerngll). Due to the scalar nature of transforma- Po(t=1/ty) = T(BM/2) (pMmiz+2"
tion (3) it does not change the matrik of eigenvectors.

Let us start with considering the mean densi{p) of  with t,=2x#%/A being the Heisenberg time. Due to Eq.
scattering (eigenphases at arbitrary coupling. It is self- (10), the partial time delays at ideal and nonideal coupling
evident that the phases in the Q., for the cas&=0) are  (7\*) and 7, respectively are simply related as
uniformly distributed on the unit circle, the average density

being merelypo(¢)=(1/M)S 8(¢— ¢.)=1/7. The corre- 10 =2ha¢e|IE=mp(8) 7. (12

(11)
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Here, we have neglected the smooth nonresonant depefihis similarity transformation unveils the symmetry that is
dence ofp(8) on E. Since the phase and its derivatifthke  hidden inQ: Qg is already a real symmetri¢tHermitian, or
partial time delayare uncorrelated quantities in the €], guaternion self-duglmatrix for 8=1 (2, or 4. In the eigen-
their joint distribution factorizes: b0(¢17(0)) basis ofSthe diagonal elements @ and those of) coin-
= (Um)Py(#?). This is not the case fof)(é, 7, whenS cide. Moreover, in the case of chaotic scattering with ideal

+0. The relation po(c,#®)dep dr®=p(5,7)dsdr be- coupling, the matribxQ, turns out to be statistically indepen-

tween them allows us, however, to represent the density i€t Of S their joint probability density beind®o(S,Qs)
partial time delays at nonideal coupling as =Po(S)Wo(Qs), where

= o, 70)
7?(7-)=J0 dé—&(&ﬂ

- Wo(Qq) 0(Qs) det Q) ~3FM/2-2+ A~ (B2t O™ (17)
Po(p(8),70(8,7))

is the probability density of the time-delay matfik9]. The

-ds latter is manifestly invariant under the choice of the basis for

:J —[7p(8)1? Py(mp(8)7). (13 QS,_ p_roving thg ab_ove statement on the relation between
o7 statistics of partial time delays and diagonal elements of the

] ) Wigner-Smith matrix.
One can easily convince ones¢f0] that such a formula 74 find the corresponding JPDRy({r.}) one has to in-

reproduces in every detail the expression.obtaine.d in Reiegrate out all off-diagonal elements @, which is a hard
[11] py means of supersymmetry calcgla}t|ons. It is Worthproblem in general. For the case of unitary symmepy,
mentioning that the density of phasé® is independent of - _ 5 “one can perform the job by splitting the integration into

the underlying symmetry, and therefore Et@) is also valid A .
: : that over the matribg=diag(q, - . . ,qu) of eigenvalues of
for the crossover regime of partly broken TRSote that in Q. and that of the eigenvectory,

the crossover regim@y(t) is a slightly more complicated
function; see Ref[12]]. o(A)AXQ)
Expression(13) is the proper one for generalization to the WS({TC})“f dlq] ————¢e
JPDF of the partial time delayw({.}). Before doing this, detq)M
we first establish a useful relation betwegnand the matrix R
elements of the Wigner-Smith time-delay matriQ  with A(q)=1Il,-,(d,—0p) being the Vandermonde determi-
= —i%(9S/JE)S' [17]. Writing Sin the eigenbasis represen- nant. Here Q({7})=fd[V]IIM ,8(7.— (VGVT)s.) stands
tation asS=UsUT, one obtains for the remaining integral over the unitary group which can
be done, following Ref[22], by means of the famous

WG (7)), (18)

J5.. . .oUl. Itzykson-Zuber formuld23]. Finally, we find it more conve-
utQu= —iﬁ&—ESTHﬁ S,UTﬂ—E s', (14 nient to define the generating function of partial time delays

rather than the JPDF itself and obtain

where[, ] denotes the commutator. The mat%bbeing diag- _ def ¢ (k)]

onal, the diagonal elements of the second term in (E4) (e ilkamat - Fhmrm)y o =TI T2 (19

are zero, whereas the first term is exactly the diagonal matrix IT (ka—ky)

of the partial time delays. Thus, the partial time delays coin- a<b

cide with the diagonal elements of the time-delay matrix . M Kt/ i

taken in the eigenbasis of the scattering matrix, wherey; (k)= fgdqg ¢ ~“Ye ™97, the index spans the
valuesl=1,... M, andj=0,1,... M—1.

7e=[UTQU],c. (15 Such an expression allows us to calculate all the moments

and correlation functions of partial time delays by a simple

The physical meaning of the diagonal elements of thedifferentiation. Moreover, setting in the preceding equation
time-delay matrix is well known: they describe the time de-k,=-..=ky=k and calculating the corresponding limit in
lay of a wave-packet incident in a given chanh&r,21]. the right-hand side, we come to a convenient representation
Thus, relation14) sheds more light on the physical meaning for the distribution?},(t,,) of the Wigner time delayt,,
of the somewhat formally defined partial time delays. In par-= (7, + ...+ r,)/Mty, for a system with broken TRS and
ticular, one expects that for the case of ideal coupling thedeal coupling to continuum,
inherent rotational invariance of the problem makes all the
basises statistically equivalent, and thus, the JPDF of diago-
nal elements of th&-matrix should coincide with that of
partial time delays.

The latter claim can be substantiated as follows. Followwhere(/,](“)(k)Ed",pj(k)/d k", andj,n=0,... M—1.
ing the insightful papef19], it is convenient to consider the  The distribution of the Wigner time delay was earlier cal-
“symmetrized” time-delay matrixQs, culated explicitly only for the case oM =1 [11,12,24,
when it follows from Eq.(11). Compact expressio(R0) is
valid for =2 and arbitraryM [25]. ForM =2, Eq.(20) can
be integrated further to yield

Pl | dkedetyfdol,  (20)

aS
QS: S~ 1/2Qsl/2: —ihS™ ZI./2E S 1/2. (16)
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For S#0 the matricesS and Qg cease to be statistically
independent variables and do correlate. Therefore, statistical
properties of diagonal elements Qfin arbitrary basigsave
with U(a,b,z)=[1M(a)]fsdy VY Y(1+y)P271e”?Y  the eigenbasis 08) are different from that of partial time
being the confluent hypergeometrical function. Here we repdelays, unless coupling is ideal. Still, the JP{ 7.}) of
resented the above distributid@l) in a form covering all the partial time delays at nonideal coupling can be
B=1,2,4, which will be verified below. In particular, the found by repeating basically the same steps which lead
asymptotic behavior at,>1 is P,(t,)xt,” %, in agree- to Eq. (13). The identity p({d.}.{7c})d[8]d[7]
ment with the known universal tail 2”2, which is typi- =5 (161, 17Oy d[ $] d[ 9], together with the statistical
cal for the time-delay distributions in open chaotic SyStemslndependence ob, and 7_go) [which follows from Eq.(17)],

[11,12,18,19 allows us to relatev andw as follows:
To verify Eq.(21) for B=1,4, it is convenient to consider ({7eh) o{7eh) '

a general problem of finding the distributidfiy(Q) of the

nxn submatrixQ standing on the main diagonal ;. a{ Pt 7))
This distribution is found to be W({Tc}):f d[ 4] EREARC

+1
Pz(tw)oct;f(ﬂ”)e—ﬂ“wu(BT,Z/;+ 2,B

tw

. (2D

Po({bet {7}

\7\/0(@)0( g(b)deté)—ﬁ(mlzm—1)—2e—Bthr6*1/2_ (22) J, . 1!\_/1[ 5o el (mo (50
= ™ c) 1 P(1Ocs)Woly T c)Tcs)s
The particular case= 1 reproduces resulll) of the Hamil- c=1 . o

tonian approach. Equatid22) for n=2 helps in calculating (24)

the joint distribution\fvo(tl,tz) of two partial time delays
ty ,= 7y ,/ty for arbitraryM. One obtains
whered[ 6] means the product of differentials.

i U B BM B2 B N B In conclusion, we suggest the transformation of the scat-
Wo(tq,ts) 2’ 2 2t, 2ty 23 tering phases, allowing one to reduce the problem of quan-
Po(t1) Po(ty) (ty1) P2 tum chaotic scattering with statistically equivalent channels

at arbitrary coupling to that for ideal coupling. Applications
of this transformation to statistical properties of phases and

The knowledge ofwy(t,t,) allows us to find further the those of time delays are discussed.

distribution of the Wigner time delay foM =2 and thus
prove formula(21) for any 8. As follows from Eq.(23), We are grateful to V.V. Sokolov for critical comments.
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