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Reducing nonideal to ideal coupling in random matrix description of chaotic scattering:
Application to the time-delay problem
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We write explicitly a transformation of the scattering phases reducing the problem of quantum chaotic
scattering for systems withM statistically equivalent channels at nonideal coupling to that for ideal coupling.
Unfolding the phases by their local density leads to universality of their local fluctuations for largeM. A
relation between the partial time delays and diagonal matrix elements of the Wigner-Smith matrix is revealed
for ideal coupling. This helped us in deriving the joint probability distribution of partial time delays and the
distribution of the Wigner time delay.
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The random matrix theory~RMT! is generally accepted to
be an adequate tool for describing various universal stat
cal properties of quantum systems with chaotic intrinsic
namics; see Ref.@1# and references therein. In particular, o
can distinguish two variants of the RMT approach allowi
one to address the chaotic nature of quantum scattering.
first one @2# considers the scattering matrixS as the prime
object without any reference to the system Hamiltonian. T
probability distributionP(S) of S at the fixed energyE of
incident particles is chosen to satisfy a maximum entro
principle and natural constraints which follow from the un
tarity and causality ofS, and the presence~or absence! of the
time-reversal~TRS! and spin-rotation~SRS! symmetries,

P~S!}U det~12S̄†S̄!

det~12S̄†S!2U (bM122b)/2

. ~1!

Such a distribution is known as the Poisson kernel@3# and
uses the phenomenological average~or optical! S-matrix
S(E) as the set of input parameters. Without loss of gen
ality S̄ can be considered as diagonal@4#. P(S) depends also
on the number of scattering channelsM and the symmetry
index b @b52 for a system with broken TRS, andb
51(4) if the TRS ispreserved and the SRS is present~ab-
sent!#.

The approach proved to be a success for extracting m
characteristics important in the theory of mesoscopic tra
port @5#. However, correlation properties of theS-matrix at
close values of energyE as well as spectral characteristics
an open system related to the so-called resonances turn o
be inaccessible in the framework of such an approach, es
tially because of the one-energy nature of the latter. To
dress such quantities one needs to consider the Hamilto
Ĥ of the quantum chaotic system as the prime building blo
of the theory. It amounts to treatingĤ as a largeN3N
random matrix of appropriate symmetry and relatingS to the
Hamiltonian by means of standard tools of the scatter
theory @6,7#. This idea supplemented with the supersymm
try technique of ensemble averaging@8# resulted in advance
1063-651X/2001/63~3!/035202~4!/$15.00 63 0352
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in calculatingS-matrix correlation functions@6,9# and many
other related characteristics such as, e.g., time delays@10–
12#; see Refs.@11,1# for a review.

In the limit N→` one can prove@13# the equivalence of
both mentioned approaches by deriving the Poisson ke
~1! from the Hamiltonian approach~see also Ref.@11#!, with
the averageS-matrix being

S~E!ab5
12ga@ iE/21pn~E!#

11ga@ iE/21pn~E!#
dab , ~2!

independent ofb. Here, the average density of statesn(E)
5p21A12(E/2)2 determines the mean level spacingD
5(nN)21 of the closed system, and phenomenological c
stantsgc.0 characterize the coupling strength to continuu
in different scattering channels (c51, . . . ,M ).

The particular case of ideal coupling,S̄50 @when the
transmission coefficients equal unity for all channels; see
~6! below#, plays an especially important role for th
S-matrix approach@14#. Equation ~1! simplifies then to
P0(S)5const, which is invariant under the transformatio
of S, leaving the measure invariant. Such a situation co
sponds to the so-called Dyson’s circular ensemble~CE! of
unitary matrices and is much simpler to handle analytica

A general situation of nonideal coupling,S̄Þ0, turns out
to be much more complicated. It is natural to expect, ho
ever, that results obtained for the case of nonideal coup
could be related to those at ideal coupling. Although ma
useful ideas around such a relation were discussed in
literature@2,13,11,15#, we are not aware of explicit relations
to the best of our knowledge.

In this Rapid Communication we consider th
most simple but physically important case of statistica
equivalent channels. We demonstrate the validity of
following simple statement~and discuss several applica
tions of it!: Let S(E)5Uŝ(E)U†, where ŝ(E)
5diag(e2id1(E), . . . ,e2idM(E)), be the randomS-matrix at the
energyE, the distribution of which is given by the Poisso
©2001 The American Physical Society02-1
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kernel~1! with an explicit parameterization ofS(E) from Eq.
~2! (gc5g for all c). Then for everyE the transformation of
the eigenphasesdc(E),

fc5arctanF 1

pn~E! S 1

g
tandc~E!1

E

2 D G ~3!

maps them to the eigenphasesfc of the random scattering
matrix, the distribution of which is given by the CE of th
same symmetry. In particular, the joint probability dens
function ~JPDF! of fc is @1#

p0~$fc%!} )
a,b

ue2ifa2e2ifbub. ~4!

The matrix U of energy dependent eigenvectors uniform
distributed in the orthogonal, unitary, or symplectic gro
~for b51,2, or 4, respectively! is not affected by map~3!.
This is a consequence of statistical equivalence of the s
tering channels.

The suggested transformation was first noticed and v
fied in Ref. @11# for the case of broken TRS (b52) and
further exploited in Ref.@12#. It can be easily generalized t
the other symmetry classes as follows. We calculate first
Jacobian of the transformation~3!. After a simple algebra it
can be represented as

]fc

]dc
5

cos2fc

png cos2dc

5
T

u12S̄* e2idcu2
, ~5!

where

T~E!512uS~E!u25
4g pn~E!

11g212g pn~E!
~6!

is the energy dependent transmission coefficient@6#. We note
that exactly the same factors as Eq.~5! appear in Eq.~1!.
Employing the identity

ue2ifa2e2ifbu5ue2ida2e2idbuU cosfacosfb

png cosdacosdb
U, ~7!

we substitute Jacobians~5! into Eq. ~4! and, making use of
the identity)a,b

M f af b5()cf c)
M21, arrive at

p~$dc%!} )
a,b

ue2ida2e2idbub)
c51

M U]fc

]dc
Ub(M21)/211

. ~8!

With Eq. ~5! taken into account, we immediately recogni
in this expression the JPDF of the eigenphases correspon
to Poisson kernel~1!. Due to the scalar nature of transform
tion ~3! it does not change the matrixU of eigenvectors.

Let us start with considering the mean densityr(d) of
scattering ~eigen!phases at arbitrary coupling. It is sel
evident that the phases in the CE~i.e., for the caseS̄50) are
uniformly distributed on the unit circle, the average dens
being merelyr0(f)5(1/M )(c d(f2fc)51/p. The corre-
03520
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sponding density forS̄Þ0 is not constant. Indeed, using th
identity r(d)dd5r0(f)df, we see that

r~d!5
1

p U]f

]d U5 T

pu12S̄* e2idu2
. ~9!

Although simple, this relation is an important one and est
lishes the physical meaning of the Jacobians of transfor
tion ~3! relating them to the corresponding densities of t
scattering phases. Density~9!, being expressed in terms ofS̄

only, does not depend on the particular choice ofS̄ used in
the derivation as long as the averageS-matrix is proportional
to the unit matrix.

It is instructive to look at Eq.~8! in the limit of large
number of channels when the typical differenceda2db

;1/M!1. Then one can expanddc5d01 d̃c ( d̃c!1)
around, say,d0. The leading contribution is given by
p($d̃c%)})a,bud̃a2 d̃bub)cu]fc /]dcud0

b(M21)/211, which fur-

ther goes top0($f̃c%)})a,buf̃a2f̃bub and agrees with dis-
tribution ~4! of the CE upon the proper rescaling of th
phases,

f̃c5u]fc /]dcud0
d̃c5pr~d0!d̃c . ~10!

We see that in the limitM@1 the local fluctuations of the
phases unfolded by their local density turn out to be u
formly described by the CE at arbitrary coupling streng
Such a universality in statistics of phases of random unit
~scattering! matrices has much in common with that typic
for eigenvalues of random Hamiltonian matrices@1# and is in
agreement with results of realistic numerical simulations
M523 @16#.

Let us now consider an application of the same ideas
the time-delay problem, where such a universality reve
itself explicitly. Following the original wave-packet analys
by Wigner and Smith@17# it is natural to define@11# the
partial time delays via the energy derivative of the scatter
phases,tc52\]dc /]E. Their statistical properties hav
been studied in much detail in the framework of the Ham
tonian approach for the case of broken@11# and preserved
TRS as well as in the whole crossover region of gradua
broken TRS@12#. Recently, some of these predictions we
successfully verified with the model of a quantum Blo
particle chaotically moving in a superposition of ac and
fields @18#.

In particular, the mean density of partial time dela
P(t)5(1/M )(c d(t2tc) turns out to be especially simpl
at ideal coupling,T51, when it reads as

P0~ t5t/tH!5
~b/2!bM /2

G~bM /2!

e2b/2t

tbM /212
, ~11!

with tH52p\/D being the Heisenberg time. Due to E
~10!, the partial time delays at ideal and nonideal coupli
(tc

(0) andtc , respectively! are simply related as

tc
(0)52\]fc /]E5pr~dc!tc. ~12!
2-2
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Here, we have neglected the smooth nonresonant de
dence ofr(d) on E. Since the phase and its derivative~the
partial time delay! are uncorrelated quantities in the CE@19#,
their joint distribution factorizes: p̂0(f,t (0))
5(1/p)P0(t (0)). This is not the case forp̂(d,t), when S̄

Þ0. The relation p̂0(f,t (0))df dt (0)5 p̂(d,t)dd dt be-
tween them allows us, however, to represent the densit
partial time delays at nonideal coupling as

P~t!5E
0

p

ddU]~f,t (0)!

]~d,t!
U p̂0„f~d!,t (0)~d,t!…

5E
0

pdd

p
@pr~d!#2 P0„pr~d!t…. ~13!

One can easily convince oneself@20# that such a formula
reproduces in every detail the expression obtained in R
@11# by means of supersymmetry calculations. It is wo
mentioning that the density of phases~9! is independent of
the underlying symmetry, and therefore Eq.~13! is also valid
for the crossover regime of partly broken TRS.@Note that in
the crossover regimeP0(t) is a slightly more complicated
function; see Ref.@12##.

Expression~13! is the proper one for generalization to th
JPDF of the partial time delays,w($tc%). Before doing this,
we first establish a useful relation betweentc and the matrix
elements of the Wigner-Smith time-delay matrixQ
52 i\(]S/]E)S† @17#. Writing S in the eigenbasis represen
tation asS5UŝU†, one obtains

U†QU52 i\
] ŝ

]E
ŝ†1 i\F ŝ,U†

]U

]EG ŝ†, ~14!

where@ ,# denotes the commutator. The matrixŝ being diag-
onal, the diagonal elements of the second term in Eq.~14!
are zero, whereas the first term is exactly the diagonal ma
of the partial time delays. Thus, the partial time delays co
cide with the diagonal elements of the time-delay mat
taken in the eigenbasis of the scattering matrix,

tc5@U†QU#cc . ~15!

The physical meaning of the diagonal elements of
time-delay matrix is well known: they describe the time d
lay of a wave-packet incident in a given channel@17,21#.
Thus, relation~14! sheds more light on the physical meani
of the somewhat formally defined partial time delays. In p
ticular, one expects that for the case of ideal coupling
inherent rotational invariance of the problem makes all
basises statistically equivalent, and thus, the JPDF of dia
nal elements of theQ-matrix should coincide with that o
partial time delays.

The latter claim can be substantiated as follows. Follo
ing the insightful paper@19#, it is convenient to consider th
‘‘symmetrized’’ time-delay matrixQs ,

Qs5S21/2QS1/252 i\S21/2
]S

]E
S21/2. ~16!
03520
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This similarity transformation unveils the symmetry that
hidden inQ: Qs is already a real symmetric~Hermitian, or
quaternion self-dual! matrix for b51 ~2, or 4!. In the eigen-
basis ofS the diagonal elements ofQs and those ofQ coin-
cide. Moreover, in the case of chaotic scattering with id
coupling, the matrixQs turns out to be statistically indepen
dent of S, their joint probability density beingP̂0(S,Qs)
5P0(S)W0(Qs), where

W0~Qs!}u~Qs!det~Qs!
23bM /2221be2(b/2)tHtr Qs

21
~17!

is the probability density of the time-delay matrix@19#. The
latter is manifestly invariant under the choice of the basis
Qs , proving the above statement on the relation betwe
statistics of partial time delays and diagonal elements of
Wigner-Smith matrix.

To find the corresponding JPDFw0($tc%) one has to in-
tegrate out all off-diagonal elements ofQs , which is a hard
problem in general. For the case of unitary symmetry,b
52, one can perform the job by splitting the integration in
that over the matrixq̂5diag(q1 , . . . ,qM) of eigenvalues of
Qs and that of the eigenvectors,V,

w0
u~$tc%!}E d@ q̂#

u~ q̂!D2~ q̂!

det~ q̂!3M
e2tHtr q̂21Q~$tc%!, ~18!

with D(q̂)5)a,b(qa2qb) being the Vandermonde determ
nant. Here Q($tc%)5*d@V#)c51

M d(tc2(Vq̂V†)cc) stands
for the remaining integral over the unitary group which c
be done, following Ref.@22#, by means of the famous
Itzykson-Zuber formula@23#. Finally, we find it more conve-
nient to define the generating function of partial time dela
rather than the JPDF itself and obtain

^e2 i (k1t11 . . . 1kMtM)&t}
det@c j~kl !#

)
a,b

~ka2kb!

, ~19!

wherec j (kl)5*0
`dq qj 23Me2 iklq2tH /q, the indexl spans the

valuesl 51, . . . ,M , and j 50,1, . . . ,M21.
Such an expression allows us to calculate all the mome

and correlation functions of partial time delays by a simp
differentiation. Moreover, setting in the preceding equat
k15•••5kM5k and calculating the corresponding limit i
the right-hand side, we come to a convenient representa
for the distributionP M

u (tw) of the Wigner time delay,tw

5(t11 . . . 1tM)/MtH , for a system with broken TRS an
ideal coupling to continuum,

P M
u ~ tw!}E

2`

`

dkeiMktwdet@c j
(n)~k!#, ~20!

wherec j
(n)(k)[dnc j (k)/dkn, and j ,n50, . . . ,M21.

The distribution of the Wigner time delay was earlier ca
culated explicitly only for the case ofM51 @11,12,24#,
when it follows from Eq.~11!. Compact expression~20! is
valid for b52 and arbitraryM @25#. For M52, Eq.~20! can
be integrated further to yield
2-3
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P2~ tw!}tw
23(b11)e2b/twUS b11

2
,2b12,

b

tw
D , ~21!

with U(a,b,z)5@1/G(a)#*0
`dy ya21(11y)b2a21e2zy

being the confluent hypergeometrical function. Here we r
resented the above distribution~21! in a form covering all
b51,2,4, which will be verified below. In particular, th
asymptotic behavior attw@1 is P2(tw)}tw

2b22 , in agree-
ment with the known universal tailt2bM /222, which is typi-
cal for the time-delay distributions in open chaotic syste
@11,12,18,19#.

To verify Eq.~21! for b51,4, it is convenient to conside
a general problem of finding the distributionW̃0(Q̃) of the
n3n submatrix Q̃ standing on the main diagonal ofQs .
This distribution is found to be

W̃0~Q̃!}u~Q̃!det~Q̃!2b(M /21n21)22e2btHtr Q̃21/2. ~22!

The particular casen51 reproduces result~11! of the Hamil-
tonian approach. Equation~22! for n52 helps in calculating
the joint distributionŵ0(t1 ,t2) of two partial time delays
t1,25t1,2/tH for arbitraryM. One obtains

ŵ0~ t1 ,t2!

P0~ t1!P0~ t2!
}

US b

2
,
bM

2
1b12,

b

2t1
1

b

2t2
D

~ t1t2!b/2
. ~23!

The knowledge ofŵ0(t1 ,t2) allows us to find further the
distribution of the Wigner time delay forM52 and thus
prove formula~21! for any b. As follows from Eq. ~23!,
there exist nonvanishing correlations between the pa
time delays. They are, however, of different nature as co
pared to the correlations between theproper time delays~the
eigenvalues ofQ) which show repulsion@19#.
ex
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For S̄Þ0 the matricesS and Qs cease to be statistically
independent variables and do correlate. Therefore, statis
properties of diagonal elements ofQ in arbitrary basis~save
the eigenbasis ofS) are different from that of partial time
delays, unless coupling is ideal. Still, the JPDFw($tc%) of
the partial time delays at nonideal coupling can
found by repeating basically the same steps which l
to Eq. ~13!. The identity p̂($dc%,$tc%)d@d# d@t#

5 p̂0($fc%,$tc
(0)%)d@f# d@t (0)#, together with the statistica

independence offc andtc
(0) @which follows from Eq.~17!#,

allows us to relatew($tc%) andw0($tc%) as follows:

w~$tc%!5E d@d#U]~$fc%,$tc
(0)%!

]~$dc%,$tc%!
U p̂0~$fc%,$tc

(0)%!

5E d@d# )
c51

M

@pr~dc!# p~$dc%!w0~$pr~dc!tc%!,

~24!

whered@d# means the product of differentials.
In conclusion, we suggest the transformation of the sc

tering phases, allowing one to reduce the problem of qu
tum chaotic scattering with statistically equivalent chann
at arbitrary coupling to that for ideal coupling. Application
of this transformation to statistical properties of phases
those of time delays are discussed.
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